Destroying Drug Traffic, One Query at a Time
in·tel·li·gence NOUN: a. The capacity to acquire and apply knowledge.
The intelligence process, like in Central Intelligence Agency, is the process any person or organization should go through when making important operative decisions. But this is a description of a perfect world. In reality, organizations have to face phenomena that are very complex. When the organization itself is significantly smaller than the complexity it has to face, its members have to rely on intuition, art or not solidly grounded decisions.
This is usually the case for the local police when facing organized crime. Large crime organizations like the Italian Camorra or the drug cartels in Mexico are usually international. If you read Roberto Saviano’s Gomorrah, you’ll realize that Camorra operates as far as Germany or Scotland, while drug cartels usually span from Colombia to the US passing through Mexico. On the other hand, most of their activities happen at the local level: kidnappings, killings, drug traffic. Their main adversary is not usually a broadly operating institution like the FBI, but the local police. But for the local police, to gather a satisfying amount of information to face them is usually hopeless.
With this problem in mind, I teamed up with a Mexican colleague of mine at Harvard, Viridiana Rios. Our aim was to develop a system to enable a cheap and cost-effective way to gather intelligence operations about criminal activities.
The problem with criminal activities is that they are not only part of the complex organism of organized crime. They are also usually hidden from the public. Of course, no head of a mafia family wants to conduct his business en plein air. However, whether he likes it or not, some of these activities reach the general public anyway. This happens because, “luckily”, bad news sells a lot of newspapers. Criminal activities usually leave a clear footprint in the news. Mexican drug traffic in this is also particular, for the tradition of leaving the so called narcomensajes. These messages are writings painted on walls or on highway billboards. They are used by the criminal organizations to threaten each other or the government and the police. A narcomensaje looks like this:
When we design a system for tracking the activities of crime organizations, we want this system to be as automatic as possible. Therefore, we use some computer science tricks and we rely on the information present on the websites of newspapers. Web knowledge has a lot of problems: it’s big, it’s about many different things and it’s subject to reliability concerns. However, Google News deals with most of these problems by carefully selecting topics and reliable sources. What was left for us to do, was to systematically query the system with its APIs and clean the results. The details of this process are in a paper presented by me this week at the Conference for Information and Knowledge Management (CIKM 2012).
We did not have any way to understand if our queries connecting drug traffickers to Mexican municipalities were capturing real connections. For this reason, we performed the very same task using Mexican state governors. With our great surprise, we were able to detect with high accuracy their real patterns of activities. (Not that we are drawing a parallel between organized crime and politics, just to be clear!) This indicates that our method of tracking people’s activities by using Google News data is valid. Here are some maps of some state governors. In red the municipalities where they are detected and with a large black border their state:
What did we find?
Mexican drug traffic follows a fat-tail distribution. The meaning? There is an incredible amount of municipalities with a weak drug traffic presence and some others are an explosive factory where the employees have to carry flamethrowers. Moreover, it really looks like a hydra: destroying one hub is likely just to generate another hub, or ten smaller hubs.
And the system is growing fast, jumping from one order of magnitude to a larger one in less than a decade.
We are also able to classify cartels with several features: how much they like to compete or to explore the territory. In the future, this may be used to predict where and when we will see a spike of activity for a particular drug cartel in a particular municipality (in the picture, the migration patter of the Los Zetas cartel).
Apart from the insights, our methodology really aids the intelligence problem, whenever there are no sufficient resources to perform an actual intelligence task. We used the case of criminal activities, but the system is fairly general: by using a list of something other than a drug cartel and something other than a Mexican municipality, you can bend the system to give you information about your favorite events.