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Abstract

Cultural data analytics aims to use analytic methods to explore cultural expres-
sions – for instance art, literature, dance, music. The common thing between
cultural expressions is that they have multiple qualitatively different facets that
interact with each other in non trivial and non learnable ways. To support this
observation, we use the Italian music record industry from 1902 to 2024 as a case
study. In this scenario, a possible research objective could be to discuss the rela-
tionships between different music genres as they are performed by different bands.
Estimating genre similarity by counting the number of records each band pub-
lished performing a given genre is not enough, because it assumes bands operate
independently from each other. In reality, bands share members and have complex
relationships. These relationships cannot be automatically learned, both because
we miss the data behind their creation, but also because they are established in
a serendipitous way between artists, without following consistent patterns. How-
ever, we can be map them in a complex network. We can then use the counts of
band records with a given genre as a node attribute in a band network. In this
paper we show how recently developed techniques for node attribute analysis are
a natural choice to analyze such attributes. Alternative network analysis tech-
niques focus on analyzing nodes, rather than node attributes, ending up either
being inapplicable in this scenario, or requiring the creation of more complex n-
partite high order structures that can result less intuitive. By using node attribute
analysis techniques, we show that we are able to describe which music genres
concentrate or spread out in this network, which time periods show a balance of
exploration-versus-exploitation, which Italian regions correlate more with which
music genres, and a new approach to classify clusters of coherent music genres or
eras of activity by the distance on this network between genres or years.
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1 Introduction

Node attribute analysis has recently been enlarged by the introduction of techniques
to calculate the variance of a node attribute [1], estimate distances between two node
attributes [2], calculating their Pearson correlations [3], and cluster them [4] without
assuming they live in a simple Euclidean space – or learnable deformation thereof.

These techniques are useful only insofar the network being analyzed has rich node
attribute data, and that analyzing their relationships is interesting. This is normally
the case in cultural analytics, the use of analytic methods for the exploration of con-
temporary and historical cultures [5, 6]. Example range from archaeology – where
related artifacts have a number of physical characteristics and can be from different
places/ages [7–9] –; to art history – where related visual artifacts can be described
by a number of meaningful visual characteristics [10–12]; to sociology – where differ-
ent ideas and opinions distribute over a social network as node attributes [13, 14] –;
to linguistics – with different people in a social network producing content in differ-
ent languages [15]; to music – with complex relations between players and informing
meta-relationships between the genres they play [16, 17].

In this paper we aim at showing the usefulness of node attribute analysis in cultural
analytics. We focus on the Italian record music industry since its beginnings in the
early XX century until the present time. We build a temporally-evolving bipartite
network connecting players with the bands they play in. For each band we know how
many records of a given genre they publish, whether they published a record in a
given year, and from which Italian region they originate – all node attributes of the
band. By applying node attribute analysis, we can address a number of interesting
questions. For instance:

1. How related is a particular music genre to a period? Or to a specific Italian region?
2. Is the production of a specific genre concentrated in a restricted group of bands or

generally spread through the network?
3. Does clustering genres according to their distribution on the collaboration network

conform to our expectation of meta-genres or can we discover a new network-based
classification?

4. Can we use the productivity of related bands across the years as the basis to find
eras in music production?

The music scene has been the subject of extensive analysis using networks. Some
works focus on music production as an import-export network between countries [18].
Other model composers and performers as nodes connected by collaboration or friend-
ship links [16, 19–22]. Studies investigate how music consumption can inform us about
genres [17] and listeners influencing each other [23–25]. Differently from these studies,
we do not focus on asking questions about the network structure itself. For our work,
the network structure is interesting only insofar it is the mediator of the relationships
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between node attributes – the genres, years, and regions the bands are active on –,
rather than being the focus of the analysis.

This is an important qualitative distinction, because if one wanted to perform our
genre-regional analysis on the music collaboration network without our node attribute
analysis, they would have to deal with complex n-partite objects – a player-band-
year-genre-region network – which can become unwieldy and unintuitive. On the other
hand, with our approach one can work with a unipartite projection of the player-band
relationships, and use years, genres, and regions as node attributes, maintaining a
highly intuitive representation.

Deep learning techniques and specifically deep neural networks can handle the
richness of our data [26–29]. These approaches can attempt to learn, e.g., the true
non-Euclidean distances between genres played by bands [30, 31]. The problem is that
this learning is severely limited if the space is defined by a complex network [32], as is
the case here. Therefore, one would have to use Graph Neural Networks (GNN) [33–
35]. However, GNNs focus on node analysis [36–39], usually via finding the best way
of creating node embeddings [40, 41]. GNNs only use node attributes for the purpose
of aiding the analysis of nodes rather than analyzing the attributes themselves [42–
47]. Previous research shows that, when focusing on node attributes rather than on
nodes, the techniques we use here are more suitable than adapting GNNs developed
with a different focus [4].

Another class of alternative to deal with this data richness is to use hypergraphs
[48] and high order networks [49–52]. With these techniques, it is possible to analyze
relationships involving multiple actors at the same time – rather than only dyadic
relationships like in simpler network representations – and encode path dependencies
– e.g. using high order random walks where a larger portion of the network is taken
into account to decide which node to visit next [53, 54]. While a comparative analysis
between these techniques and the ones used in this paper is interesting, in this paper
we exclusively focus on the usefulness of techniques based on node attribute analysis.
We leave the comparison with hypergraphs and high order networks as a future work.

Our analysis shows that the node attribute techniques can help addressing a num-
ber of interesting research tasks in cultural data analytics. We show that we are able
to describe the eclecticism required by music genres – or expressed in time periods –,
by how dispersed they are on the music network. We can determine the geographical
connection of specific genres, by estimating their correlation not merely based on how
many bands from a specific region play a genre, but how bands not playing that genre
relate with those that do. We can create new genre categories by looking at how close
they are to each other on the music network. We can apply the same logic to discover
eras in Italian music production, clustering years into coherent periods.

Finally, we show that our node attribute analysis rest on some assumptions that
are likely to be true in our network – that bands tend to share artists if they play
similar genres, in similar time periods, and hailing from similar regions.

We release our data as a public good freely accessible by anyone [55], along with
all the code necessary to reproduce our analysis1.

1http://www.michelecoscia.com/?page id=2336
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Fig. 1: Our bipartite network data model. Artists in blue, bands in red. Edges are
labeled with the first-last year in which the collaboration was active. The edge width
is proportional to the weight, which is the number of years in which the artist partic-
ipated to records released by the band.

2 Data

In this section we present our data model and a summary description of the data’s
main features. Supplementary Material Section 1 provides all the details necessary to
understand our choices when it comes to data collection, cleaning, and pre-processing.

2.1 Data Model

To obtain a coherent network and to limit the scope of our data collection, we focus
exclusively on the record credits from published Italian bands. The data from this
project comes from crowd-sourced user-generated data. We mainly use Wikipedia2

and Discogs3. We should note that these sources have a bias favoring English-speaking
productions. While this bias does not affect our data collection too much, since we
focus on Italy without comparing it to a different country/culture, it makes it more
likely that there are Italian records without credits, or that are simply missing.

Figure 1 shows our data model, which is a bipartite network G = (V1, V2, E). The
nodes in the first class V1 are artists. An artist is a disambiguated physical real person.
The nodes in the second class V2 are bands, which are identified by their name. Note
that we consider solo artists as bands, and they are logically different from the artist
with the same name. Note how in Figure 1 we have two nodes labeled “Ginevra Di
Marco”, one in red for the band and the other in blue for the artist.

Each edge (v1, v2, t) – with v1 ∈ V1 and v2 ∈ V2 – connects an artist if they
participated in a record of the band. The bipartite network is temporal. Each edge
has a single attribute t reporting the year in which this performance happened. This
implies that there are multiple edges between the same artist and the same band, one
per year in which the connection existed – for notation convenience, we can use wv1,v2

to denote this count for an arbitrary node pair (v1, v2), since it is equivalent to the
edge’s weight.

2https://it.wikipedia.org
3https://www.discogs.com/
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Band Rock Pop Electro HipHop Tuscany Liguria Piedmont Veneto 1998 1999 2000
Litfiba 0.448 0.038 0.008 0.000 1 0 0 0 1 1 1
Sabrina Salerno 0.006 0.103 0.322 0.000 0 1 0 0 0 1 0
Gigi D’Agostino 0.000 0.018 0.316 0.000 0 0 1 0 1 1 1
Madame 0.000 0.176 0.098 0.333 0 0 0 1 0 0 0

Table 1: A sample of the node attributes. For four sampled bands we show in the
tables sections (left to right): the row-normalized number of records released tagged
as Rock, Pop, Electronic, or Hip Hop; the one-hot encoded attribute values for the
region attribute; the one-hot encoded attribute values for the years of activity.

We have multiple attributes on the band. The attributes are divided in three
classes. First, we have genres. We recover from Discogs 477 different genres/styles
that have been used by at least one band in the network. Each of these genres is an
attribute of the band, and the value of the attribute is the number of records the band
has released with that genre. We use S to indicate the set of all genres, and show
an example of these attributes in Table 1 (first section). The second attribute class
is the one-hot encoded geographical region of origin, with each region being a binary
vector equal to one if the band originates from the region, zero otherwise. We use R
to indicate the set of regions. Table 1 (second section) shows a sample of the values
of these attributes. The final attribute class is the activity status of a band in a given
year – with Y being the set of years. Similarly to the geographical region, this is a
one-hot encoded binary attribute. Table 1 (third section) shows a sample of the values
of these attributes.

2.2 Summary Description

For the remainder of the paper, we limit the scope of the analysis to a projection of our
bipartite network. We focus on the band projection of the network, connecting bands if
they share artists. We do so to keep the scope contained and show that even by looking
at a limited perspective on the data, node attribute analysis can be versatile and open
many possibilities. Supplementary Section 2 contains summary statistics about the
bipartite network and the other projection – connecting artists with common bands.

There are many ways to perform this projection [56–58], which result in different
edge weights. Here we weight edges by counting the number of years a shared artist has
played for either band. Supplementary Material Section 1 contains more details about
this weighting scheme. Since we care about the statistical significance – assuming a
certain amount of noise in user-generated data – we deploy a network backboning
technique to ensure we are not analyzing random fluctuations [59].

Table 2 shows that the band projection has a low average degree and density,
with high clustering coefficient and modularity – which indicate that one can find
meaningful communities in the band projection. These are are typical characteristics
of a wide variety of complex networks that can be found in the literature.

Table 3 summarizes the top 10 bands according to three standard centrality mea-
sures: degree, closeness, and betweenness centrality. Degree is biased by the density of
the hip hop cluster – which, as we will see, is a large quasi-clique, including only hip
hop bands. Closeness is mostly dominated by alternative rock bands, as they happen
to be in the center of mass of the network. The top bands according to betweenness are
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Variable Band
# Nodes 2,447
# Edges 6,512
Avg Deg 5.3
Density 0.0022
Clustering 0.4160
Modularity 0.8437

Table 2: Summary
statistics for the pro-
jected networks.

# Degree Closeness Betweenness
1 Night Skinny Calibro 35 Roberto Gatto
2 Marracash Giorgio Canali & Rossofuoco Adriano Celentano
3 DJ Double S Le Luci della Centrale Elettrica Vinicio Capossela
4 Bassi Maestro Vinicio Capossela Luca Carboni
5 Jake La Furia Dente Marcello Giombini
6 Noyz Narcos Afterhours Pietro Umiliani
7 Fabri Fibra Roberto Gatto Renato Sellani
8 Emis Killa Elisa Cube
9 Gemitaiz Luca Carboni Tullio Pane

10 Salmo Gianni Maroccolo Ennio Morricone

Table 3: The top 10 bands in the band projection according to dif-
ferent centrality measures. In bold we have nodes central in multiple
measures.

those bands that are truly the bridges connecting different times, genres, and Italian
regions. Note that we analyze the network as a cumulative structure, therefore these
centrality rankings are prone to overemphasize bands that are in the central period of
the network, as they naturally bridge the whole final structure. In other words, it is
harder to be central for very recent or very old bands.

We visualize the band projection to show visually the driving forces behind the
edge creation process: temporal and genre assortativity. For this reason we produce
two visualizations. First, we take on the temporal component in Figure 2. The network
has a clear temporal dimension, which we decide to place on a left-to-right axis in the
visualization, going from older to more recent.

Second, we show the genre component in Figure 3, which instead causes clustering
– the tendency of bands playing the same genre to connect to each other more than
with any other band. For simplicity, we focus on the big three genres – pop, rock,
and electronic – plus hip hop, since the latter creates the strongest and most evident
cluster notwithstanding being less popular than the other three genres. For each node,
if the band published more than a given threshold records in one of those four genres,
we color the node with the most popular genre among them. If none of those genres
meets the threshold, we count the band as playing an “other” generic category.

This node categorization achieves a modularity score of 0.524, which is remarkably
high considering that it uses no network information at all – and it is not a given
that this is the correct number of communities. This is a sign that the network is
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1909 1971 2022

Fig. 2: The temporal component of the band projection. Each node is a band. Edges
connect bands with significant number of artist overlap. The edge’s color encodes
its statistical significance (in increasing significance from bright to dark). The edge’s
thickness is proportional to the overlap weight. The node’s size is proportional to its
betweenness centrality. The node’s color encodes the average year of the band in the
data – from blue (low year, less recent) to red (high year, more recent).

strongly assortative by genre. With our division in four genres plus other, we observe
an assortativity coefficient of 0.689, which is quite high. The assortativity coefficient
for the average year of activity is even higher (0.91).

We omit showing the network using the regional information on the bands for two
reason. First, there are too many regions (20) to visualize them by using different colors
for nodes. Second, the structural relationship between the network and the regions is
weaker – the assortativity coefficient being 0.223 – which would lead to a less clear
visualization.

From the figures and the preliminary analysis, it appears quite evident that the
structure of the network has a set of complex and interesting interactions with time,
genres, and, to a lesser extent, geography. This means that it is meaningful to use the
network structure to estimate the relationship between genres, time, and space. This
is the main topic of the paper and we now turn our attention to this analysis.

7



Rock

Pop

Electronic

Hip Hop Other

Fig. 3: The genre component of the band projection. Same legend as Figure 2, except
for the node’s color. Here, color encodes the dominant genre among pop (green), rock
(red), electronic (purple), hip hop (blue), and other (gray).

3 Results

In this section we investigate a number of potential research questions in cultural
data analytics. Each of them is tackled with a different node attribute analysis tech-
nique: network variance [1], network correlation [3, 60], and Generalized Euclidean
distance [2] – which is at the basis of node attribute clustering [4] and era discovery.
Supplementary Material Section 3 explains in details each of these methods.

3.1 Genre Specialization

When focusing on the genre attributes of the nodes, their network variance can tell
us how concentrated or dispersed they are in the network. A disperse genre means
that the bands playing that genre do not share artists, not even indirectly: they are
scattered in the structure. Vice versa, a low-variance genre implies that there is a clique
of artist playing it, and they are shared by most of the bands releasing records with
that particular genre. Table 4 reports the five most (and least) concentrated genres in
the network.

We only focus on genres that have a minimum level of use, in this specific case at
least 1% of bands must have released at least one record using that specific genre. The
values of network variance should be compared with a null version of the genre – the
values themselves do not tell us whether they are significant or if we would get that
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Genre Variance
Stoner Rock 4.954∗∗

Beat 4.772∗∗∗

Neo-Classical 4.605∗∗∗

Country 4.403∗

Post-Modern 4.359∗

... ...
Happy Hardcore 0.249∗∗∗

Power Metal 0.198∗∗∗

Eurobeat 0.161∗∗∗

Gabber 0.155∗∗∗

Trap 0.105∗∗∗

Table 4: The genres with
the five highest and low-
est variance in the band
projection network. ∗∗∗p <
0.001, ∗∗p < 0.01, ∗p <
0.05.

level of variance simply given the popularity of the genre. For this reason we bootstrap
a pseudo p-value for the variance.

Let’s assume that S is a |V | × |S| genre matrix. The Sv,s entry tells us how many
records with genre s the band v has published. We can create S ′, a randomized null
version of S. In S ′, we ensure that each null genre has the same number of records
as it has in S. We do so by extracting with replacement at random

∑
v∈V

Sv,s bands

for genre s. The random extraction is not uniform: each band has a probability of
being extracted proportional to

∑
s∈S

Sv,s. In this way, S ′ has the same column sum

and similar row sum as S. In other word, we randomize S preserving the popularity
of each genre and each band. Then, we can count the number of such random S ′s in
which the null genre has a higher (lower) variance than the observed genre.

Table 4 shows that stoner rock has a high and significant variance, indicating that
bands playing stoner rock have a low degree of specialization. This can be contextu-
alized by the fact that stoner rock was tried out unsystematically by a few unrelated
bands, ranging from heavy metal to indie rock. On the other hand, many variants of
heavy metal have low variance. This can be explained by the fact that heavy metal is
a niche genre in Italy, and all bands playing specific heavy metal variants know each
other and share members.

In Figure 4 we pick two representative genres – Hip Hop and Beat – which both
have the same relatively high popularity in number of bands playing them, and have
a significant (low or high) variance and we show how they look like on the network.
The figure shows that the variance measure does what we intuitively think it should
be doing: the Hip Hop bands have low variance and therefore strongly cluster in the
network, while the Beat bands are more scattered.
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(a) Hip Hop (b) Beat

Fig. 4: Two genres with different variance. Node size, node definition, and edge thick-
ness, color, and definition is the same as Figure 2. The color is proportional to the
genre-band node attribute value, with bright colors for low values and dark colors for
high values.
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Fig. 5: The network variance (y axis) for a given decade (x axis). Background color
indicates the statistical significance: red = lower than expected, green = higher than
expected, white = not significantly different from expectation.

3.2 Temporal Variety

We are not limited to the calculation of variances for genres: we can perform the same
operation for the years. If the variance of a genre tells us how diverse the set of bands
playing is, the variance of a year can tell us how diverse the year was. Figure 5 shows
the evolution of variances per year. We test the statistical significance of the observed
variance value by shuffling the values of the node attribute for a given year a number
of times, testing whether the observation is significantly higher, lower, or equal to this
expectation.
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From the figure we can see that there seems to be two phase transitions. In the
first regime, we have an infancy phase with low activity and low variance. The first
phase transition starts in the year 1960 and brings the network to a second regime of
high activity and high variance. After the peak around the year 1980, a second phase
transition introduces the third regime from the mid 90s until the present, with high
activity but low variance. In the latter years, we see hip hop cannibalizing all genres
and compressing the record releases to its tightly-knit cluster.

3.3 Node Attribute Correlation

We can now shift our attention from describing a single node attribute at a time
– its variance as we saw in the previous sections – to describing the relationships
between pairs of attributes. In this section, we do so by calculating their network
correlation. Specifically, we want to make a geographical analysis. The ultimate aim
is to answer the question: what are some particular strong genre-region associations?
We can answer the question by calculating the network correlation between two node
attributes, one recording the genre intensity for a band and the other a binary value
telling us whether the band is from a specific region or not. The network correlation is
useful here, because it grows not only if there are a lot of bands playing that specific
genre in that specific region, but also if the other bands in the region that do not play
that genre are close in the network to – i.e. share members with – bands playing that
genre.

In Table 5 we report some significant region-genre associations. For each region,
we pick the most popular genre in the network to which they correlate at a significant
level – and they have the highest correlation among all other regions that correlate
significantly to that genre. The significance is estimated via bootstrapping, by ran-
domly shuffling the region vector – i.e. changing the set of bands associated to the
region while respecting its size. Table 5 does not report a genre for all regions, because
for some regions there was no genre satisfying the constraints. Note that some regions
might correlate more strongly or more significantly with a genre that is not reported
in the table, but we omit it if there was another region with a stronger correlation for
that genre.

3.4 Genre Clusters

When we measure the pairwise distance between all node attributes systematically we
can cluster them hierarchically. Here, we do such a network-based hierarchical cluster-
ing on the music genres and styles as recorded by Discogs. The aim is to see whether
we can find groups of genres that are similar to each other, potentially informing a
data-driven musical classification. Figure 6 shows a bird’s eye view of the hierarchical
clustering, with the similarity matrix and the dendrogram.

To make sense of it, we have selected some clusters, for illustrative purposes only.
Table 6 shows what genres and styles from Discogs end up in the color-highlighted
clusters from Figure 6. We can see that the clusters include similar genres which make
as a coherent set of more general music styles. The figure also highlights that there is
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Region Genre Significance
Apulia Latin ∗

Calabria Hip Hop ∗

Campania Folk, World, & Country ∗

Emilia-Romagna House ∗∗

Friuli Reggae ∗∗∗

Lazio Soundtrack ∗∗∗

Liguria Prog Rock ∗∗∗

Lombardy Electronic ∗∗∗

Marche Rock ∗

Piedmont Punk ∗∗∗

Sardinia Thrash ∗

Sicily Fado ∗∗

Tuscany New Wave ∗

Umbria Cut-up/DJ ∗∗

Veneto Krautrock ∗∗

Table 5: The most popular genre with the strongest
and significant correlation with a given region. The
third column shows the significance level of the
correlation, estimated via bootstrapping: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

Color Genres
Blue Calypso, Bolero, Mambo, Cha-Cha, Tango, Beguine, Samba, Rumba
Green Hard Rock, Symphonic Metal, Power Metal, Progressive Metal, Heavy Metal, Speed Metal,

Thrash, Doom Metal, Death Metal, Black Metal
Purple Trap, Pop Rap, Hip Hop, Conscious, Hardcore Hip-Hop, Boom Bap, Instrumental, Hip House
Black Dub Techno, Acid, Deep Techno, Techno, Minimal, Tech House, Minimal Techno

Table 6: The genres encased in the clusters we highlight in Figure 6.

a hierarchical structure of music styles, with meaningful clusters-within-clusters, and
clear demarcation lines between groups and subgroups.

Recall that these clusters are driven exclusively by the network’s topology and do
not use any feature coming from the songs themselves. This means that using a network
of shared members among bands is indeed insightful in figuring our the related genres
these bands play. Therefore, network-based clustering has the potential to guide the
definition of new musical classifications.

3.5 Temporal Clusters

We now look at the eras of Italian music we can discover in the data. Figure 7 shows
the dendrogram, connecting years and groups of years at a small network distance to
each other. Each era we identify colors its corresponding branch in the dendrogram.
We avoid assigning an era for years pre-1906 and post-2018, due to issues with the
representativeness of the data. We also notice that the 1938-1945 period is tumul-
tuous, with many small eras in a handful of years, which is understandable given the
geopolitical situation at a time, and so we ignore that period as well.
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Fig. 6: The hierarchical genre clusters. The heatmap shows the pairwise similarity
among the genres – from low (dark) to high (bright) similarity. The dendrograms show
the hierarchical organization of the clusters.

To make sense of temporal clustering, the standard approach in the literature
would be to compare counts of activities across clusters. However, that would ignore
the role of the network structure. In our framework, we can characterize eras applying
the same logic used to find them. We calculate the network distance between a node
attribute representing the era and each genre. The era’s node attribute simply reports,
for each band, a normalized count of records they released within the bounds of that
era. We normalize so that each era attribute sums to one, to avoid overpowering the
signal with the scale of the largest and most active eras.

Then, for each era, we report the list of genres that have the smallest distance with
that era. Note that some genres might still have a small distance with other eras, but
we only report the smallest. These are the genres we use to label the eras in Figure
7. These genres are not the most dominant in that era – in almost all cases, pop and

13



1902
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Canzone Napoletana, Opera, Classical

Tango

Latin, Swing, Samba, Rumba, Pop,
Mambo, Folk, Vocal, Bolero, Chanson,
Cha-Cha

Schlager, Jazz, Twist, Bossa Nova

Beat, Rock & Roll
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Fig. 7: The eras dendrogram. Clusters join at a height proportional to their similarity
level (the more right, the less similar). Colors encode the detected eras with labels on
the left.
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rock dominate – but they give an intuition of what was the most characteristic genre
of the era, distinguishing it from the others.

We can see that the characterization makes intuitive sense, with the classical genres
being particularly correlated with the 1906-1916 era. Beat and rock’n’roll are par-
ticularly associated to the 1965-1971 period, the dates corresponding to the British
Invasion in Italy. Notably, the punk genre has its closest association with the most
recent era we label, 2006-2017, proving that – at least in Italy – punk is indeed not
dead.

3.6 Explaining the Network

Wrapping up the analysis, one key assumption that underpins the analysis we made
so far is that the connections in the band projection follow a few homophily rules. We
can have meaningful genre (Section 3.4) and temporal (Section 3.5) clusters using our
network distance measures only if bands do tend to connect if they have a genre or
temporal similarity. Two bands should be more likely to share members if they play
similar genres and if they do it at a similar point in time. More weakly, correlations
between genres and geographical regions (Section 3.3) also make sense if bands with
similar geographical origins also tend to share members more often than expected.

While proving this assumption would require a paper on its own, we can at least
provide some evidence in favor of its reasonableness. We do so by running two linear
regressions. In the first regression, we want to explain the likelihood of an edge to exist
in the band projection with the genre, temporal, and geographical similarity between
bands, or:

Yu,v = β0 + β1Gu,v + β2Ru,v + β3Tu,v + ϵ.

In this formula:

• Yu,v is a binary variable, equal to 1 if bands u and v shared at least one member,
and zero otherwise;

• Gu,v is the genre similarity, which is the cosine similarity between the vectors
recording how many records of a given genre bands u and v have published;

• Ru,v is the region similarity, equal to 1 if the bands originate from the same region,
and zero otherwise;

• Tu,v is the temporal similarity, in which we take the logarithm of the number of
years in which both bands released a record, plus one to counter the issue when the
bands did not share a year;

• β0 and ϵ are the intercept and the residuals.

Note that Yu,v contains all links with weight of at least one, even those that are not
statistically significant and were dropped from our visualizations and analyses from
the previous sections. Moreover, it also has to contain all non-links. However, since
the network is sparse, it is not feasible to have all non-links in the regression. Thus, we
perform a balanced negative sampling: for each link that exists we sample and include
in Yu,v a link that does not.

For Gu,v we only consider the most popular 38 genres, since sparsely used genres
would make bands more similar than what they would otherwise be.
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Dependent variable:

Exists Size

(1) (2)

Genre 0.568∗∗∗ 0.605∗∗∗

(0.004) (0.008)

Region 0.079∗∗∗ 0.089∗∗∗

(0.003) (0.006)

Year 0.248∗∗∗ 0.325∗∗∗

(0.001) (0.003)

Constant 0.210∗∗∗ 0.037∗∗∗

(0.002) (0.005)

Observations 173,966 86,983
R2 0.284 0.170
Adjusted R2 0.284 0.170
Residual Std. Error 0.423 (df = 173962) 0.693 (df = 86979)
F Statistic 22,966.210∗∗∗ (df = 3; 173962) 5,944.348∗∗∗ (df = 3; 86979)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: The regression results from our two models predicting the exis-
tence of a link (column 1) and its weight (column 2).

Residual Genre Region Year

Edge Existence

Fig. 8: The relative importance of each explanatory variable to determine the exis-
tence of a link between two bands in the band projection.

The first column of Table 7 shows the result of the model. The first thing we can
see is that we can explain 28.4% of the variance in the likelihood of a edge to exist.
This means that 71.6% of the reasons why two bands share a member is not in our
data – be it unrecorded social networks, random chance, impositions from labels, etc.

However, explaining 28.4% of the variance in the edge existence likelihood still
provides a valid clue that our homophily assumptions should hold. All similarities we
considered play a role in determining the existence of an edge: all of their coefficients
are positive and statistically significant. Given that these similarity measures do not
share the same units – and not even the same domain –, one cannot compare the
coefficients directly. However, we can map their contributions to the R2 by estimating
their relative importance [61, 62], which we do in Figure 8. From the figure we can see
that it is the temporal similarity the one playing the strongest role, closely followed
by genre similarity. Spatial similarity, on the other hand, while still being statistically
significant, provides little to no additional explanatory power to the other factors.
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Residual Genre Region Year

Edge's Weight

Fig. 9: The relative importance of each explanatory variable to determine the weight
of a link between two bands in the band projection.

Once we establish that the existence of the connection is related to genre, temporal,
and geographical similarity, we can ask the same question about the strength of the
relationship between two bands. We apply the same model as before, changing the
target variable:

log(Wu,v) = β0 + β1Gu,v + β2Ru,v + β3Tu,v + ϵ.

Here, log(Wu,v) is the logarithm of the edge weight. Note that here we only focus
on those edges that have a non-zero weight, i.e. those that exist. This is because we
do not want this model to try and predict also edge existence, beside its strength, as
we already took care of that problem with the previous model.

Table 7 contains the results in its second column. We can see that, also in this case,
all three factors are significant predictors of the edge weights. The number of artists
two bands share goes up if the two bands play similar genres, with temporal overlap,
and if they originate from the same region. The R2 is noticeably lower, though, which
means that log(Wu,v) is harder to predict than Yu,v.

Figure 9 shows the same R2 decomposition we did in Figure 8 for Yu,v. All explana-
tory variables explain less variance than in the previous model. Relative to each other,
the temporal overlap is the factor gaining more importance than genre similarity.

4 Discussion

In this paper we have provided a showcase of the analyses and conclusions one could
do in cultural data analytics by using node attribute analysis. We focused on the
case study of Italian music from the past 120 years. We built a bipartite network
connecting artists to bands and then projected it to analyze a band-band network. We
have shown how one could identify genres concentrating in such a network, hinting
at clusters of bands playing homogeneous genres, using network variance. We have
shown a geographical analysis, calculating the network correlation between the region
of origin of bands and the genres they play. We have shown how one could create a new
music genre taxonomy by performing node attribute clustering on music genre data.
We also proposed a novel way of performing era detection in a network, by finding
clusters of similar consecutive years, where years are node attributes.

While we believe our analysis is insightful, there are a number of considerations that
need to be made to contextualize our work. We can broadly categorize the limitations
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in two categories: the one relating to the domain of analysis, and the methodological
ones.

When it comes to cultural data analytics, we acknowledge the fact that we are
working with user-generated data. There is no guarantee that the data is free from
significant mistakes, misleading entries, and incompleteness. Furthermore, our results
might not be conclusive. We process data semi-automatically, and the coding process
is not complete, meaning we miss a considerable amount of the lesser known artists.
This also means that there could be biases in the data collection, induced by our
decision on the order in which we explore the structure – which might be focusing
too much or too little on specific areas of Italian music. As a specific example, in our
project we have ignored another potentially rich source of node attributes: information
about the music labels/publishers. This is available on Discogs, and we could envision
a label to be represented as a node vector, whose entries are the number of records a
specific label published for a specific band. We plan to use this information for future
work. The coding process is still ongoing, and we expect to be able to complete the
network in the near future.

On the methodlogical side, we point out that what we did is only possible in the
presence of rich metadata – dozens if not hundreds of node attributes. Networks with
scarce node attribute data would not be amenable to be analyzed with the techniques
we propose here. However, in cultural data analytics, there is usually a high richness of
metadata. Furthermore, many of the node attribute techniques only make sense if the
node attributes are somehow correlated with the network structure. The musical genre
clustering or the era detection would not produce meaningful results if the probability
of two nodes of connecting was not influenced by their attributes – i.e. if the homophily
hypothesis does not hold. In our case, the homophily assumption likely holds, as we
show in Section 3.6.

When considering some specific analyses we performed other limitations emerge.
For instance, our era discovery approach exclusively looks at node activities. However,
structural changes in the network’s connections also play a key role in determining
discontinuities with the past [63]. We should explore in future work how to integrate
our node attribute approach with structural methods. When it comes to the use of
network variance, how to properly estimate its confidence intervals without using
bootstrapping remains a future work. Therefore, the results we present here should
be taken with caution, as it might be that some of the patterns we highlight are not
statistically significant.

On a more practical side, our node attribute techniques hinge on specific matrix
operations. While these can be efficiently computed on GPU using tensor representa-
tions, this might put a limit on the size of the networks analyzed, which have to fit in
the GPU’s memory.
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